

Project Number: Design Qualification Test Report	Tracking Code: 477944_Report_Rev_2
Requested by: Catie Eichhorn	Date: 12/24/2018
Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A	
Part description: SFSD/TFM	Tech: Kason He
Test Start:5/31/2015	Test Completed: 7/6/2015

(Actual part not depicted)

DESIGN QUALIFICATION TEST REPORT

SFSD/TFM SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
Part descripti	ion: SFSD/TFM

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
9/7/2015	1	Initial Issue	KH
12/24/2018	2	Add notes to LLCR	KH

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
Part descripti	on: SFSD/TFM

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Samtec Test PCBs used: PCB-106757-TST/PCB-106758-TST/PCB-106759-TST

Tracking Code: 477944_Report_Rev_2

Part description: SFSD/TFM

FLOWCHARTS

Gas Tight

Group 1 SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 8 Assemblies

Step Description

- 1. LLCR (2)
- 2. Gas Tight (1)
- LLCR (2) Max Delta = 15 mOhm

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

Normal Force

Group 1

SFSD-25-28-G-06.00-S

TFM-125-02-L-D-A

8 Contacts Minimum

Signal Without Thermals

Step Description

- Contact Gaps
- Normal Force (1)
 Expected Force at Max Deflection = 80 g Deflection = 0.004 "

Group 2

SFSD-25-28-G-06.00-S

TFM-125-02-L-D-A

8 Contacts Minimum

Signal With Thermals

Step Description

- 1. Contact Gaps
- Thermal Age (2)
- 3. Contact Gaps

4. Normal Force (1)
Deflection = 0.004 "
Expected Force at Max Deflection = 80 g

(1) Normal Force = EIA-364-04

(2) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

Tracking Code: 477944_Report_Rev_2 Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

Part description: SFSD/TFM

FLOWCHARTS Continued

Thermal Aging

Group 1 SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 8 Assemblies

Step Description

- 1. Contact Gaps
- Mating/Unmating Force(2)
- 3. LLCR (1)
- 4. Thermal Age (3)
- LLCR (1)
 Max Delta = 15 mOhm
- 6. Mating/Unmating Force(2)
- 7. Contact Gaps

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (2) Mating/Unmating Force = EIA-364-13
- (3) Thermal Age = EIA-364-17

Test Condition = 4 (105°C) Time Condition = B (250 Hours)

Page 5 of 42

FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1 SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 8 Assemblies

- 1. Contact Gaps
- 2. Mating/Unmating Force (3)

Group 2

SFSD-50-28-G-06.00-S

TFM-150-02-L-D-A

8 Assemblies

Cycles

Quantity = 25 Cycles

- 5.

Quantity = 25 Cycles

- 6.
- 7. Cycles
- 9. Quantity = 25 Cycles

Step Description

- 4. Mating/Unmating Force (3)

- Mating/Unmating Force (3)
- Quantity = 25 Cycles
- 8 Mating/Unmating Force (3)
- Cycles
- 10. Mating/Unmating Force (3)

Group 3 SFSD-05-28-G-06.00-S TFM-105-02-L-D-A

8 Assemblies

Description Step

- 1. Contact Gaps
- 2. Mating/Unmating Force (3)
- Cycles Quantity = 25 Cycles
- 4. Mating/Unmating Force (3)
- Cycles 5.
- Quantity = 25 Cycles
- 6. Mating/Unmating Force (3)
- 7. Cycles Quantity = 25 Cycles
- 8. Mating/Unmating Force (3)
- 9. Cycles Quantity = 25 Cycles
- 10. Mating/Unmating Force (3)

Step Description

- 1. Contact Gaps
- 2. LLCR (2)
- Mating/Unmating Force(3)
- Cycles Quantity = 25 Cycles
- 5. Mating/Unmating Force(3)
- Quantity = 25 Cycles
- 7. Mating/Unmating Force(3)
- Cycles 8. Quantity = 25 Cycles
- 9. Mating/Unmating Force(3)
- Cycles 10. Quantity = 25 Cycles
- Mating/Unmating Force(3) 11.
- Contact Gaps
- 13. LLCR (2)

Max Delta = 15 mOhm

- Thermal Shock(4) 14.
- LLCR (2)

Max Delta = 15 mOhm

- Humidity (1) 16.
- LLCR (2) 17.

Max Delta = 15 mOhm

18. Mating/Unmating Force(3)

(1) Hum idity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (3) Mating/Unmating Force = EIA-364-13
- (4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C) Test Duration = A-3 (100 Cycles)

Tracking Code: 477944 Report Rev 2

Part description: SFSD/TFM

FLOWCHARTS Continued

IR/DWV

Pin-to-Pin

Group 1 SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 2 Assemblies

Group 2 SFSD-25-28-G-06.00-S

2 Assemblies

Group 3

TFM-125-02-I-D-A 2 Assemblies

Group 4 SFSD-25-28-G-06.00-S TFM-125-02-I-D-A 2 Assemblies

Step Description

DWV Breakdown (2)

Step Description

DWV Breakdown₍₂₎

Description Step

DWV Breakdown₍₂₎

Step Description

1. IR (4)

DWV at Test Voltage (1) 2.

3. Thermal Shock (5)

4.

DWV at Test Voltage (1) 5.

6. Humidity (3)

7. IR (4)

DWV at Test Voltage (1) 8.

Row-to-Row

Group 5 SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 2 Assemblies

Group 6 SFSD-25-28-G-06.00-S

2 Assemblies

Group 7

TFM-125-02-L-D-A 2 Assemblies

SFSD-25-28-G-06.00-S TFM-125-02-L-D-A 2 Assemblies

Group 8

Step Description

DWV Breakdown (2)

Step Description

DWV Breakdown₍₂₎ 1.

Step Description

DWV Breakdown₍₂₎ 1.

Step Description

1. IR (4)

2. DWV at Test Voltage (1)

3. Thermal Shock (5)

4.

5. DWV at Test Voltage (1)

6. Humidity (3)

7. IR (4)

8. DWV at Test Voltage (1)

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

Tracking Code: 477944_Report_Rev_2 Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

Part description: SFSD/TFM

FLOWCHARTS Continued

Current Carrying Capacity

Group 1 SFSD-50-28-G-12.00-D-NUS TFM-150-02-L-D-A 2 Pins Powered Signal

 Step
 Description

 1.
 CCC(1) Rows = 2 Number of Positions = 1
 Group 2 SFSD-50-28-G-12.00-D-NUS TFM-150-02-L-D-A 4 Pins Powered Signal

 Step
 Description

 1.
 CCC (1) Rows = 2 Number of Positions = 2
 Group 3 SFSD-50-28-G-12.00-D-NUS TFM-150-02-L-D-A 6 Pins Powered Signal

Step Description

1. CCC (1)
Number of Positions = 3
Rows = 2

Group 4 SFSD-50-28-G-12.00-D-NUS TFM-150-02-L-D-A 8 Pins Powered Signal

 Step
 Description

 1.
 CCC (1) Rows = 2 Number of Positions = 4

Group 5

SFSD-50-28-G-12.00-D-NUS TFM-150-02-L-D-A 100 Pins Powered Signal

Step Description

. CCC₍₁₎
Rows = 2
Number of Positions = 50

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve
(TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C
(GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1 SFSD-25-28-G-12.00-S TFM-125-02-L-D-A 8 Assemblies

Step Description

- 1. LLCR (1)
- Mechanical Shock (2)
- 3. Random Vibration (3)
- 4. LLCR (1)

Max Delta = 15 mOhm

.....

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)
Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event Detection

Group 1 SFSD-25-28-G-12.00-S TFM-125-02-L-D-A 60 Points

Step Description

 Nanosecond Event Detection (Mechanical Shock) (1)

 Nanosecond Event Detection (Random Vibration) (2)

.....

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine) Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Tracking Code: 477944_Report_Rev_2 Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

Part description: SFSD/TFM

FLOWCHARTS Continued

Cable Pull

Group 1 SFSD-25-28-G-12.00-D-NUS TFM-125-02-L-D-A 5 Assemblies 0 Degrees

Step Description
1. Cable Pull(1)

Group 2 SFSD-25-28-G-12.00-D-NUS TFM-125-02-L-D-A 5 Assemblies 90 Degrees

Step Description

1. Cable Pull (1)

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure Failure = Discontinuity >1 microsecond at 10 ohms

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, Mechanical Shock Test Procedure for Electrical Connectors
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, Vibration Test Procedure for Electrical Connectors
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, Nanosecond-Event Detection for Electrical Connectors
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

Tracking Code: 477944 Report Rev 2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A	
Tracing court ://> : Iteport Ite, =	1 411 11 51 55 20 20 30 00 00 11 11 120 02 23 23 11	

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

NORMAL FORCE (FOR CONTACTS TESTED OUTSIDE THE HOUSING):

- 1) Reference document: EIA-364-04, Normal Force Test Procedure for Electrical Connectors.
- 2) The contacts shall be tested in the loose state, *not* inserted in connector housing.
- 3) The contacts shall be prepared to allow access to the spring member at the same attitude and deflection level as would occur in actual use.
- 4) In the event that portions of the contact prevent insertion of the test probe and/or deflection of the spring member under evaluation, said material shall be removed leaving the appropriate contact surfaces exposed.
- 5) In the case of multi-tine contacts, each tine shall be tested independently on separate samples as required.
- 6) The connector housing shall be simulated, if required, in order to provide an accurate representation of the actual contact system performance.
- 7) A holding fixture shall be fashioned to allow the contact to be properly deflected.
- 8) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5 μm (0.0002").
- 9) The probe shall be attached to a Dillon P/N 49761-0105, 5 N (1.1 Lb) load cell providing an accuracy of \pm 0.2%.
- 10) The nominal deflection rate shall be 5 mm (0.2")/minute.
- 11) Unless otherwise noted a minimum of five contacts shall be tested.
- 12) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 13) The system shall utilize the TC² software in order to acquire and record the test data.
- 14) The permanent set of each contact shall be measured within the TC² software.
- 15) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b. 40° C
 - c. 50° C
 - d. 70° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure

Tracking Code: 477944 Report Rev 2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems.*
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

Fig. 1
(Typical set-up, actual part not depicted.)
90° Connector pull, notice the electrical continuity hook-up wires.

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
Part descripti	on: SFSD/TFM

RESULTS

Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise ------2.6 A per contact with 2 contacts (2x1) powered CCC for a 30°C Temperature Rise -----2.1 A per contact with 4 contacts (2x2) powered

Mating/Unmating Forces

Thermal Aging Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

- Initial
 - Mating 0
 - Min ----- 3.45 Lbs
 - Max----- 4.07 Lbs
 - Unmating

 - Max----- 3.63 Lbs
- **After Thermal**
 - Mating
 - Min ----- 2.67 Lbs
 - Max-----2.93 Lbs
 - Unmating
 - Min ----- 2.78 Lbs
 - Max----- 3.14 Lbs

Tracking Code: 477944_Report_Rev_2

Part description: SFSD/TFM

RESULTS Continued

	RESULTS Continue
ing/Unmating Forces	
lating-Unmating Durability (SFS)	D-25-28-G-06.00-S/TFM-125-02-I
Initial	
 Mating 	
Min	3.48 Lbs
■ Max	4.44 Lbs
 Unmating 	
	2.98 Lbs
Max	3.95 Lbs
After 25 Cycles	
 Mating 	
	3.45 Lbs
■ Max	4.67 Lbs
 Unmating 	
	3.40 Lbs
112411	4.08 Lbs
After 50 Cycles	
 Mating 	
	3.58 Lbs
Max	4.87 Lbs
 Unmating 	
	3.38 Lbs
	4.25 Lbs
After 75 Cycles	
o Mating	
	3.37 Lbs
	5.00 Lbs
o Unmating	
	3.56 Lbs
	4.51 Lbs
After 100 Cycles	
o Mating	• 65 - 7
	3.83 Lbs
	5.18 Lbs
o Unmating	2 = 1 X 1
	3.71 Lbs
	4.69 Lbs
Humidity	
o Mating	
	2.71 Lbs
	3.25 Lbs
o Unmating	
	2.61 Lbs
 Max 	2.97 Lbs

Tracking Code: 477944_Report_Rev_2

Part description: SFSD/TFM

nued

			RESULTS Continued
Mat	ting-Unr	nating Basic (SFSD-50-28-G-0	06.00-S/TFM-150-02-L-D-A)
•	Initial		
	0	Mating	
		Min	6.66 Lbs
		Max	7.73 Lbs
	0	Unmating	
		Min	5.39 Lbs
		Max	6.86 Lbs
•	After 2	5 Cycles	
	0	Mating	
		Min	6.73 Lbs
		Max	8.39 Lbs
	0	Unmating	
			6.64 Lbs
		 Max 	8.15 Lbs
•	After 5	0 Cycles	
	0	Mating	
		Min	7.16 Lbs
		 Max 	8.84 Lbs
	0	Unmating	
		Min	7.13 Lbs
		 Max 	8.60 Lbs
•	After 7	5 Cycles	
	0	Mating	
		• Min	7.52 Lbs
		 Max 	9.33 Lbs
	0	Unmating	
		• Min	7.45 Lbs
		 Max 	9.02 Lbs
•	After 1	00 Cycles	
	0	Mating	
			7.76 Lbs
			9.75 Lbs
	0	Unmating	
			7.68 Lbs
		Max	9.38 Lbs

RESULTS Continued

				RESULTS Con	itinueu
	_	nating Ba	sic (SFSD-05-28-	G-06.00-S/TFM-105-02-	L-D-A)
• I	nitial				
	0	Mating			
		•		0.67	
		•	Max	0.84	Lbs
	0	Unmati	0		
		•		0.64	
		•	Max	0.79	Lbs
• A		5 Cycles			
	0	Mating	3.51	0.60	• •
		•		0.68	
		•		0.85	Lbs
	0	Unmati		0.45	
		•		0.65	
		•	Max	0.77	Lbs
• A		0 Cycles			
	0	Mating	N/C .	0.75	T1
		•		0.75	
		TT 4*		0.91	LDS
	0	Unmati		0.60	T1
		:		0.68	
	Stor 7	_	Max		LUS
• A		5 Cycles Mating			
	0	Maung	Min	0.76	I be
				1.02	
	0	Unmati		1.02	LUS
	O	I	0	0.69	I he
				0.87	
• A	fter 1	00 Cycles		0.0 7	LDS
· .	0	Mating	•		
	O	•	Min	0.80	Lhe
				1.11	
	0	Unmati		1,11	Los
	O	•	0	0.74	Lbs
		•		0.92	
				*** =	
		t 0.0055 i	inch deflection		
• I	nitial			4=0=0	
	0			158.70	
_	0			195.40	gf Set 0.0019
• T	herma				
	0			109.60	
	0	Max		170.10	gf Set 0.0018

R	RESULTS Continued	
Insulation Resistance minimums, IR		
Pin to Pin		
 Initial 		
	10000 Meg Ω	
 Unmated 	10000 Meg Ω	Passe
 Thermal Shock 		
 Mated 	10000 Meg Ω	Passe
 Unmated 	10000 Meg Ω	Passe
• Humidity		
	10000 Meg Ω	
 Unmated 	10000 Meg Ω	Passe
Row to Row		
• Initial		
o Mated	10000 Meg Ω	Passe
 Unmated 	10000 Meg Ω	Passe
 Thermal Shock 		
o Mated	10000 Meg Ω	Passe
 Unmated 	10000 Meg Ω	Passe
 Humidity 		
 Mated 	10000 Meg Ω	Passe
 Unmated 	10000 Meg Ω	Passe
Dielectric Withstanding Voltage minimus	ms. DWV	
• Minimums	-,	
o Breakdown Voltage	1125 VAC	
o Test Voltage		
o Working Voltage	280 VAC	
Pin to Pin		
• Initial DWV	Passed	
• Thermal DWV		
• Humidity DWV		
·	1 asseu	
Row to Row		
• Initial DWV		
• Thermal DWV		
Humidity DWV	Passed	

Tracking Code: 477944_Report_Rev_2

Part description: SFSD/TFM

RESULTS Continued

		• 4 5	
LLCR The	ermal Aging Group (192 LLCR test p	oints)	
	-G-06.00-S/TFM-125-02-L-D-A		
		39.16 mOhms Max	
• Therm:			
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms		
0	+10.1 to +15.0 mOhms		
0	+15.1 to +50.0 mOhms		
0	+50.1 to +2000 mOhms		
0	>+2000 mOhms		
_	R value include 6 inch cable resistance.	o i omes	open i unui e
LLCR Gas	s Tight Group (192 LLCR test points)		
	-G-06.00-S/TFM-125-02-L-D-A		
• Initial -		42.43 mOhms Max	
• Therms			
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms		
0	+10.1 to +15.0 mOhms		
0	+15.1 to +50.0 mOhms		
0	+50.1 to +2000 mOhms		
C)	+50.1 to +2000 mOnms	0 Points	Unstable
_			
Note: LLCF	>+2000 mOhmsR value include 6 inch cable resistance. ting/Unmating Durability Group (192	0 Points	
Note: LLCF LLCR Ma SFSD-25-28	>+2000 mOhmsR value include 6 inch cable resistance.	2 LLCR test points)	
Note: LLCF LLCR Ma' SFSD-25-28 • Initial -	>+2000 mOhms	2 LLCR test points)	
Note: LLCF LLCR Ma' SFSD-25-28 • Initial -	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max	Open Failure
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points	Open Failure
Note: LLCF LLCR Ma SFSD-25-28 Initial- Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points O Points	Open Failure Stable Minor
Note: LLCF LLCR Ma SFSD-25-28 Initial- Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Marginal
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Warginal Unstable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Warginal Unstable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Unstable Open Failure
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 191 Points	Open Failure Stable Minor Acceptable Warginal Unstable Open Failure
Note: LLCF Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 0 Points 0 Points 0 Points 0 Points 191 Points	Open Failure Stable Minor Marginal Unstable Open Failure Stable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 191 Points 1 Points 1 Points 0 Points 1 Points 0 Points 0 Points	Open Failure Stable Minor Marginal Unstable Open Failure Stable Minor Acceptable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 191 Points 1 Points 1 Points 0 Points 1 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Unstable Open Failure Stable Stable Minor Acceptable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 1 Points 1 Points 1 Points 0 Points 1 Points 0 Points 0 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Unstable Open Failure Stable Minor Acceptable Marginal Unstable
Note: LLCF Ma SFSD-25-28 Initial- Durabi Therms	>+2000 mOhms	2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 1 Points 1 Points 1 Points 0 Points 1 Points 0 Points 0 Points 0 Points 0 Points 0 Points	Open Failure Stable Minor Acceptable Unstable Open Failure Stable Minor Acceptable Marginal Unstable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms	>+2000 mOhms	2 LLCR test points)0 Points 2 Points0 Points	Open Failure Stable Minor Acceptable Unstable Open Failure Stable Minor Acceptable Marginal Unstable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms Humid	>+2000 mOhms	2 LLCR test points)0 Points 2 Points 39.43 mOhms Max192 Points 0 Points 0 Points 0 Points 191 Points 191 Points 0 Points 1 Points 0 Points 1 Points	Open Failure Stable Minor Acceptable Unstable Stable Stable Marginal Marginal Unstable Unstable Unstable Unstable Open Failure
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms Humid	>+2000 mOhms	2 LLCR test points)0 Points 2 Points 39.43 mOhms Max192 Points 0 Points 0 Points 0 Points 1 Points 1 Points 1 Points 0 Points 0 Points 1 Points 1 Points 0 Points 1 Points 0 Points 1 Points 0 Points	Open Failure Stable Minor Acceptable Unstable Stable Stable Marginal Marginal Unstable Unstable Unstable Open Failure Stable
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms Humid	>+2000 mOhms	2 LLCR test points)0 Points0 Points0 Points0 Points0 Points0 Points	Open Failure Stable Minor Acceptable Unstable Stable Stable Marginal Harginal Unstable Unstable Unstable Open Failure Stable Acceptable Marginal
Note: LLCF LLCR Ma SFSD-25-28 Initial Durabi Therms Humid	>+2000 mOhms	0 Points 2 LLCR test points) 39.43 mOhms Max 192 Points 0 Points 0 Points 0 Points 1 Points 1 Points 1 Points 0 Points 1 Points 1 Points 0 Points 1 Points 1 Points 0 Points 1 Points 0 Points 1 Points 0 Points 0 Points 1 Points 0 Points	Open Failure Stable Minor Marginal Unstable Stable Stable Minor Acceptable Marginal Unstable Unstable Open Failure Stable Unstable Open Failure Stable Unstable Minor Acceptable Marginal Unstable

RESULTS Continued

LLCR Shock & Vibration Group (192 LLCR test points)

SFSD-25-28-G-12.00-S/TFM-125-02-L-D-A

- Initial ----- 70.14 mOhms Max
- Shock &Vibration

 - +15.1 to +50.0 mOhms ------ Points ----- Marginal
 +50.1 to +2000 mOhms ----- Unstable
 - o >+2000 mOhms------ Open Failure

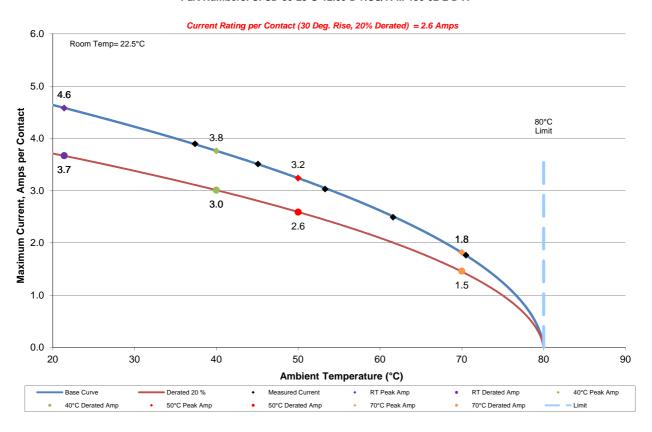
Note: LLCR value include 12 inch cable resistance.

Mechanical Shock & Random Vibration:

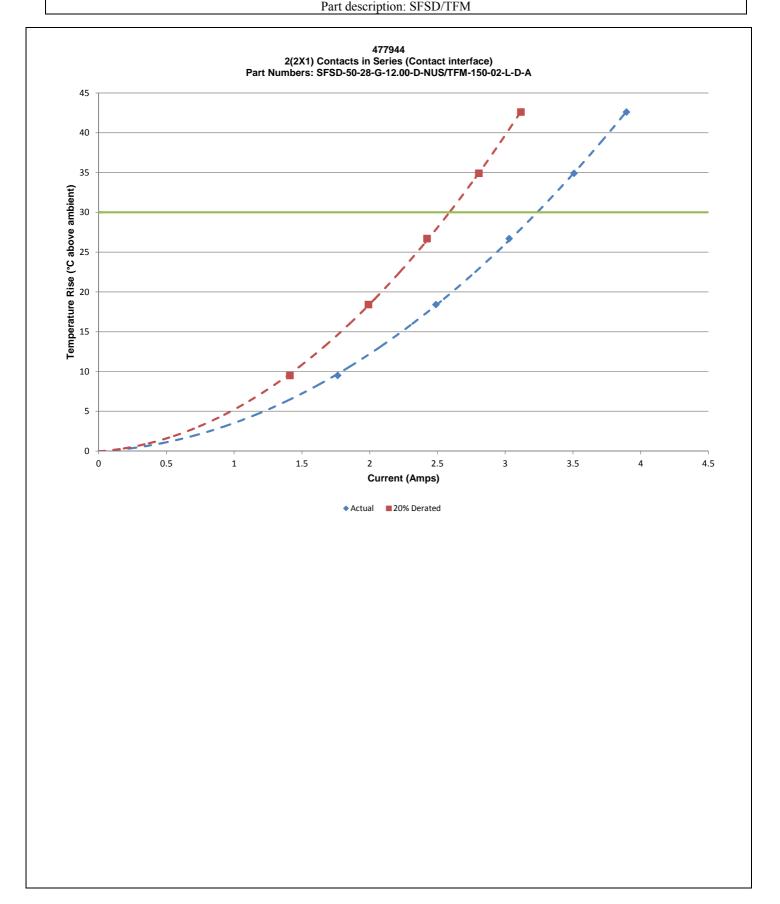
- o Shock
 - No Damage------Pass
 - 50 Nanoseconds------ Pass
- Vibration
 - No Damage------Pass
 - 50 Nanoseconds-------Pass

Cable Pull

- 0 ° Pull force
 - o Min------2.61 Lbs
 - o Max ------ 3.46 Lbs
- 90 ° Pull force
 - o Min------17.86 Lbs
 - o Max -----21.41 Lbs

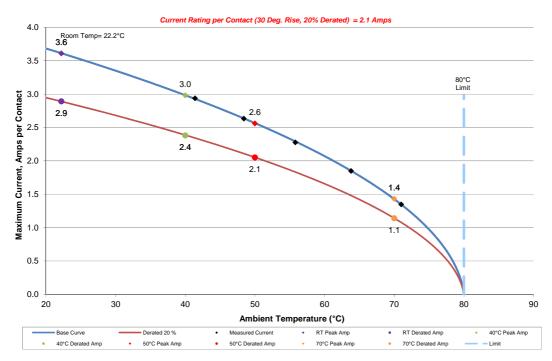

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A					
Part description: SFSD/TFM						

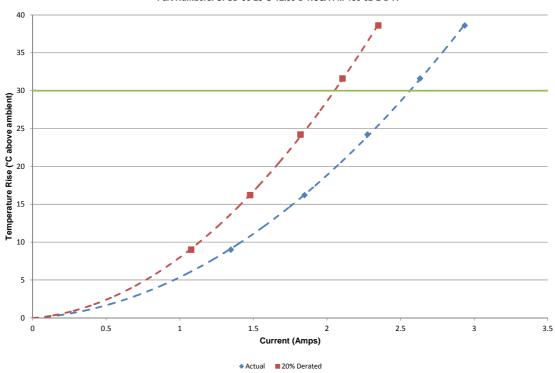
DATA SUMMARIES


TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent conductors/contacts powered

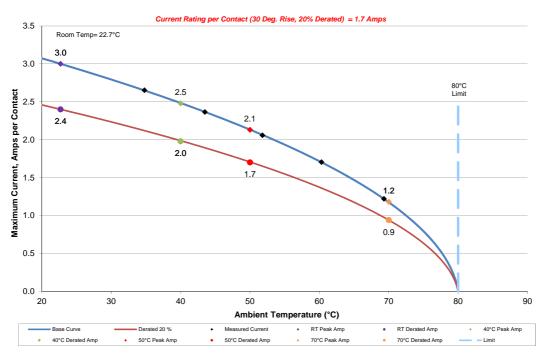
477944 2(2X1) Contacts in Series (Contact interface) Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A

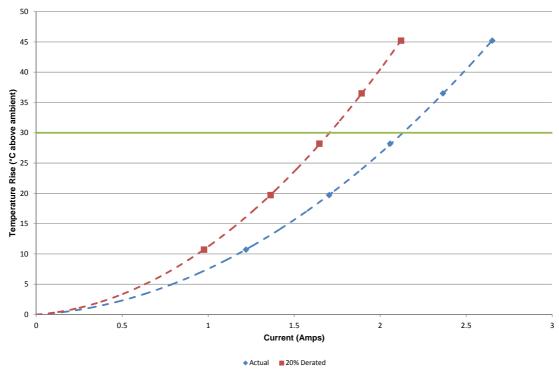

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
D . 1	CEGD/FELV


DATA SUMMARIES Continued

b. Linear configuration with 4 adjacent conductors/contacts powered

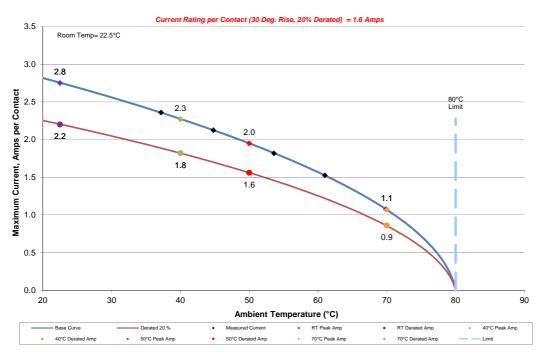
477944
4(2X2) Contacts in Series (Contact interface)
Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A

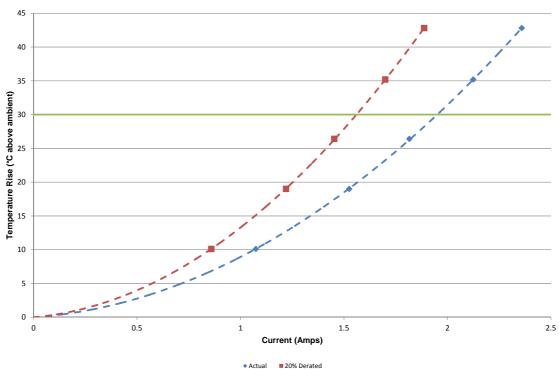

477944
4(2X2) Contacts in Series (Contact interface)
Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A


DATA SUMMARIES Continued

c. Linear configuration with 6 adjacent conductors/contacts powered

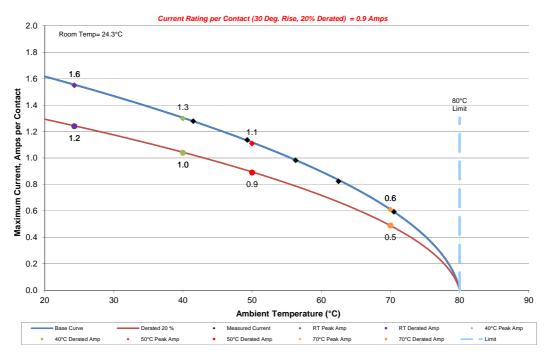
477944
6(2X3) Contacts in Series (Contact interface)
Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A

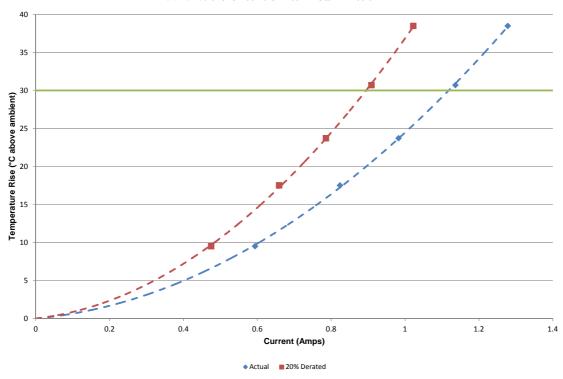

477944
6(2X3) Contacts in Series (Contact interface)
Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A


DATA SUMMARIES Continued

d. Linear configuration with 8 adjacent conductors/contacts powered

477944 8(2X4) Contacts in Series (Contact interface) Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A


477944 8(2X4) Contacts in Series (Contact interface) Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A


DATA SUMMARIES Continued

e. Linear configuration with all adjacent conductors/contacts powered

477944 100(2X50) Contacts in Series (Contact interface) Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A

477944 100(2X50) Contacts in Series (Contact interface) Part Numbers: SFSD-50-28-G-12.00-D-NUS/TFM-150-02-L-D-A

Tracking Code: 477944_Report_Rev_2

Part description: SFSD/TFM

DATA SUMMARIES Continued

MATING-UNMATING FORCE:

Thermal Aging Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

		Ini	tial		After Thermals				
	Mating		Mating Unmating		Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	15.35	3.45	13.70	3.08	11.88	2.67	12.37	2.78	
Maximum	18.10	4.07	16.15	3.63	13.03	2.93	13.97	3.14	
Average	16.69	3.75	14.85	3.34	12.55	2.82	13.20	2.97	
St Dev	1.19	0.27	0.82	0.18	0.36	0.08	0.52	0.12	
Count	8	8	8	8	8	8	8	8	

Mating-Unmating Durability Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

112444114	, eg		oup (81 8 2	25-26-G-00.00		V2 E D 11)				
		lni	tial			After 25 Cycles				
	M	ating	Unmating		М	ating	Unmating			
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)		
Minimum	15.48	3.48	13.26	2.98	15.35	3.45	15.12	3.40		
Maximum	19.75	4.44	17.57	3.95	20.77	4.67	18.15	4.08		
Average	17.43	3.92	15.28	3.44	17.26	3.88	16.34	3.67		
St Dev	1.74	0.39	1.47	0.33	1.97	0.44	1.16	0.26		
Count	8	8	8	8	8	8	8	8		
		After 50) Cycles			After 75	Cycles			
	Mating Unmating		mating	М	ating	Unmating				
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)		
Minimum	15.92	3.58	15.03	3.38	16.46	3.70	15.83	3.56		
Maximum	21.66	4.87	18.90	4.25	22.24	5.00	20.06	4.51		
Average	18.04	4.06	17.10	3.85	18.81	4.23	17.90	4.02		
St Dev	2.12	0.48	1.39	0.31	2.22	0.50	1.48	0.33		
Count	8	8	8	8	8	8	8	8		
		After 10	0 Cycles			After H	umidity			
	M	ating	Uni	mating	М	ating	Uni	mating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)		
Minimum	17.04	3.83	16.50	3.71	12.05	2.71	11.61	2.61		
Maximum	23.04	5.18	20.86	4.69	14.46	3.25	13.21	2.97		
Average	19.42	4.37	18.46	4.15	13.32	3.00	12.55	2.82		
St Dev	2.30	0.52	1.54	0.35	0.81	0.18	0.48	0.11		
Count	8	8	8	8	8	8	8	8		

SUMMARIES Continued

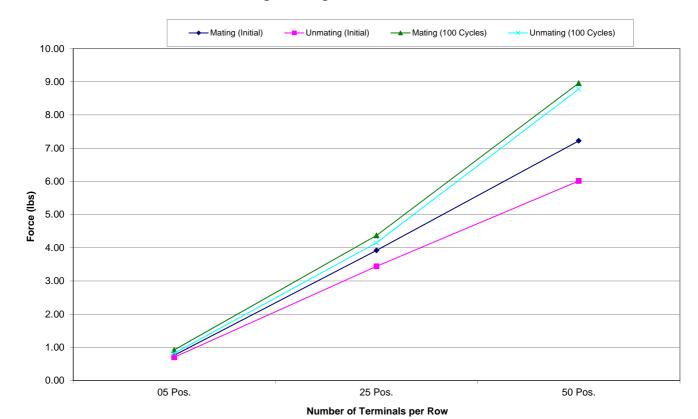
MATING-UNMATING FORCE:

		Ini	tial		After 25 Cycles				
	M	ating	Uni	mating	М	ating	Uni	mating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	29.62	6.66	23.97	5.39	29.94	6.73	29.53	6.64	
Maximum	34.38	7.73	30.51	6.86	37.32	8.39	36.25	8.15	
Average	32.09	7.22	26.75	6.01	33.62	7.56	33.03	7.43	
St Dev	1.72	0.39	2.08	0.47	2.46	0.55	2.12	0.48	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles		After 75 Cycles				
	M	ating	Uni	mating	Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	31.85	7.16	31.71	7.13	33.45	7.52	33.14	7.45	
Maximum	39.32	8.84	38.25	8.60	41.50	9.33	40.12	9.02	
Average	36.04	8.10	35.54	7.99	38.05	8.56	37.29	8.38	
St Dev	2.67	0.60	2.31	0.52	2.79	0.63	2.36	0.53	
			8	8	8	8	8	8	

		After 10	0 Cycles		
	М	ating	Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	34.52	7.76	34.16	7.68	
Maximum	43.37	9.75	41.72	9.38	
Average	39.86	8.96	39.04	8.78	
St Dev	2.96	0.66	2.46	0.55	
Count	8	8	8	8	

SUMMARIES Continued

MATING-UNMATING FORCE:

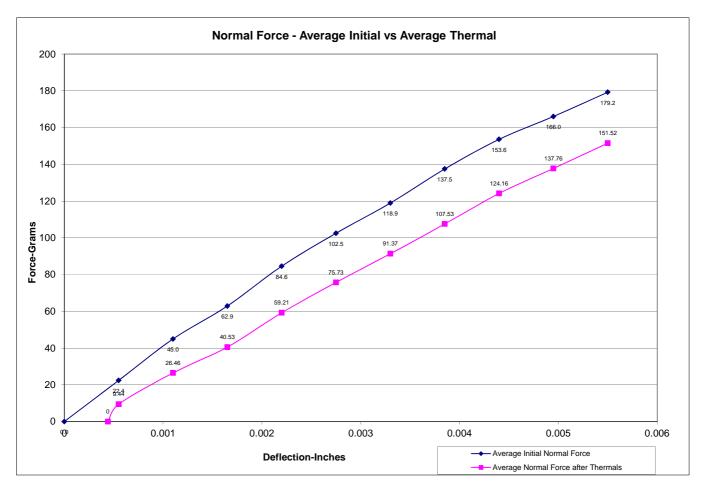

Mating-Unmating Basic (SFSD-05-28-G-06.00-S/TFM-105-02-L-D-A)

	Ini	tial			After 25	5 Cycles		
M	ating	Uni	Unmating		Mating		nating	
Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
2.98	0.67	2.85	0.64	3.02	0.68	2.89	0.65	
3.74	0.84	3.51	0.79	3.78	0.85	3.42	0.77	
3.39	0.76	3.11	0.70	3.47	0.78	3.15	0.71	
0.29	0.07	0.24	0.06	0.27	0.06	0.20	0.04	
8	8	8	8	8	8	8	8	
	After 50) Cycles		After 75 Cycles				
M	ating	Uni	mating	Mating		Unmating		
Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
3.34	0.75	3.02	0.68	3.38	0.76	3.07	0.69	
4.05	0.91	3.56	0.80	4.54	1.02	3.87	0.87	
3.69	0.83	3.34	0.75	3.90	0.88	3.48	0.78	
0.28	0.06	0.21	0.05	0.42	0.09	0.28	0.06	
8	8	8	8	8	8	8	8	
	Newtons 2.98 3.74 3.39 0.29 8 M Newtons 3.34 4.05 3.69 0.28	Mating Newtons Force (Lbs) 2.98 0.67 3.74 0.84 3.39 0.76 0.29 0.07 8 8 After 50 Mating Newtons Force (Lbs) 3.34 0.75 4.05 0.91 3.69 0.83 0.28 0.06	Newtons Force (Lbs) Newtons 2.98 0.67 2.85 3.74 0.84 3.51 3.39 0.76 3.11 0.29 0.07 0.24 8 8 8 After 50 Cycles Mating Unit Newtons Force (Lbs) Newtons 3.34 0.75 3.02 4.05 0.91 3.56 3.69 0.83 3.34 0.28 0.06 0.21	Mating Unmating Newtons Force (Lbs) Newtons Force (Lbs) 2.98 0.67 2.85 0.64 3.74 0.84 3.51 0.79 3.39 0.76 3.11 0.70 0.29 0.07 0.24 0.06 8 8 8 8 After 50 Cycles Mating Unmating Newtons Force (Lbs) Newtons Force (Lbs) 3.34 0.75 3.02 0.68 4.05 0.91 3.56 0.80 3.69 0.83 3.34 0.75 0.28 0.06 0.21 0.05	Mating Unmating M Newtons Force (Lbs) Newtons Force (Lbs) Newtons 2.98 0.67 2.85 0.64 3.02 3.74 0.84 3.51 0.79 3.78 3.39 0.76 3.11 0.70 3.47 0.29 0.07 0.24 0.06 0.27 8 8 8 8 8 After 50 Cycles Mating Unmating M Newtons Force (Lbs) Newtons Force (Lbs) Newtons 3.34 0.75 3.02 0.68 3.38 4.05 0.91 3.56 0.80 4.54 3.69 0.83 3.34 0.75 3.90 0.28 0.06 0.21 0.05 0.42	Mating Unmating Mating Newtons Force (Lbs) Newtons Force (Lbs) 2.98 0.67 2.85 0.64 3.02 0.68 3.74 0.84 3.51 0.79 3.78 0.85 3.39 0.76 3.11 0.70 3.47 0.78 0.29 0.07 0.24 0.06 0.27 0.06 8 8 8 8 8 After 50 Cycles Mating Newtons Force (Lbs) Newtons Force (Lbs) Newtons Force (Lbs) Newtons Force (Lbs) 3.34 0.75 3.02 0.68 3.38 0.76 4.05 0.91 3.56 0.80 4.54 1.02 3.69 0.83 3.34 0.75 3.90 0.88 0.28 0.06 0.21 0.05 0.42 0.09	Mating Unmating Mating Unrestore (Lbs) Newtons Force (Lbs) Newtons Force (Lbs) Newtons Force (Lbs) Newtons Newtons Force (Lbs) Newtons Newtons Force (Lbs) Newtons Newtons Force (Lbs) Newtons Restored Alter Section Alter Alter	

		After 100 Cycles								
	М	ating	Unmating							
	Newtons	Force (Lbs)	Newtons	Force (Lbs)						
Minimum	3.56	0.80	3.29	0.74						
Maximum	4.94	1.11	4.09	0.92						
Average	4.09	0.92	3.63	0.82						
St Dev	0.50	0.11	0.28	0.06						
Count	8	8	8	8						

Mating\Unmating Force Comparison

Mating/Unmating Data for 05, 25 and 50 Position SFSD/TFM


Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
Part descript	ion: SFSD/TFM

NORMAL FORCE (FOR CONTACTS TESTED OUTSIDE THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) Typically, 8-10 readings are taken and the averages reported.

		Deflections in inches Forces in Grams									
Initial	0.0006	0.0011	0.0017	0.0022	0.0028	0.0033	0.0039	0.0044	0.0050	0.0055	SET
Averages	22.39	44.95	62.89	84.57	102.50	118.93	137.47	153.59	166.03	179.23	0.0015
Min	14.20	30.90	44.70	60.50	73.10	85.90	104.30	120.50	138.90	158.70	0.0004
Max	26.00	51.40	72.60	98.60	118.00	133.80	153.10	168.90	181.90	195.40	0.0019
St. Dev	3.689	5.317	7.347	10.070	11.668	13.004	13.312	13.410	12.305	11.690	0.0004
Count	12	12	12	12	12	12	12	12	12	12	12

After				Def	lections in	inches Fo	rces in Gra	ams			
Thermals	<u>0.0006</u>	<u>0.0011</u>	<u>0.0017</u>	0.0022	<u>0.0028</u>	0.0033	0.0039	0.0044	<u>0.0050</u>	<u>0.0055</u>	SET
Averages	9.44	26.46	40.53	59.21	75.73	91.37	107.53	124.16	137.76	151.52	0.0014
Min	0.00	9.70	12.60	26.00	44.60	58.30	62.80	79.70	91.70	109.60	0.0008
Max	16.20	38.60	57.30	79.30	97.40	111.80	132.10	152.20	165.60	170.10	0.0018
St. Dev	5.477	9.936	14.337	16.262	15.504	17.971	21.692	23.699	24.067	20.913	0.0003
Count	12	12	12	12	12	12	12	12	12	12	12

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A				
Part description: SFSD/TFM					

INSULATION RESISTANCE (IR):

	Pin to Pin				
	Mated	Unmated	Unmated		
Minimum	SFSD/TFM	SFSD	TFM		
Initial	10000	10000	10000		
Thermal	10000	10000	10000		
Humidity	10000	10000	10000		

	Row to Row Mated Unmated Unmated				
Minimum	SFSD/TFM	SFSD	TFM		
Initial	10000	10000	10000		
Thermal	10000	10000	10000		
Humidity	10000	10000	10000		

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary					
Minimum SFSD/TFM					
Break Down Voltage	1125				
Test Voltage	845				
Working Voltage	280				

Pin to Pin				
Initial Test Voltage	Passed			
After Thermal Test Voltage	Passed			
After Humidity Test Voltage	Passed			

Row to Row				
Initial Test Voltage	Passed			
After Thermal Test Voltage	Passed			
After Humidity Test Voltage	Passed			

Tracking Code: 477944_Report_Rev_2 Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A
Part description: SFSD/TFM

DATA SUMMARIES Continued

LLCR Thermal Aging Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Mea	s by Pin Ty	/pe	
Date	5/31/2015	6/18/2015		
Room Temp (Deg C)	23	23		
Rel Humidity (%)	57	57		
Technician	Kason He	Kason He		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Thermal		
		Pin Type 1: Signa	d	
Average	00.00			
Average	36.60	0.57		
St. Dev.	0.92	0.57		
•				
St. Dev.	0.92	0.43		
St. Dev. Min	0.92 34.13	0.43 0.02		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Thermal	192	0	0	0	0	0

Tracking Code: 477944_Report_Rev_2 Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A

Part description: SFSD/TFM

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

- 1). A total of 192 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms:------Acceptable
 - d. +15.1 to +50.0 mOhms:------Marginal
 - e. +50.1 to +2000 mOhms------Unstable
 - f. > +2000 mOhms: ------Open Failure

•						
	LLCR Measurement Summaries by Pin Type					
Date	5/31/2015	6/1/2015	6/18/2015	7/6/2015		
Room Temp (Deg C)	23	23	23	25		
Rel Humidity (%)	57	55	57	53		
Technician	Kason He	Kason He	Kason He	Kason He		
mOhm values	Actual	Delta	Delta	Delta		
	Initial	100 Cycles	Therm Shck	Humidity		
			1: Signal			
Average	36.47			0.92		
Average St. Dev.		Pin Type	1: Signal	-		
•	36.47	Pin Type 0.50	1: Signal 0.80	0.92		
St. Dev.	36.47 1.19	Pin Type 0.50 0.59	0.80 0.90	0.92 1.01		
St. Dev. Min	36.47 1.19 33.81	Pin Type 0.50 0.59 0.00	0.80 0.90 0.00	0.92 1.01 0.00		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhm	s <=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
25 Cycles	192	0	0	0	0	0
Therm Shc	k 191	1	0	0	0	0
Humidit	/ 189	3	0	0	0	0

Part description: SFSD/TFM

DATA SUMMARIES Continued

LLCR Gas Tight Group (SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A)

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Measurement Summaries by Pin Type				
Date	5/11/2015	7/1/2015			
Room Temp (Deg C)	21	27			
Rel Humidity (%)	62	54			
Technician	Kason He	Kason He			
mOhm values	Actual	Delta	Delta	Delta	
	Initial	Acid Vapor			
		Pin Type 1: Signa	I		
Average	37.30	0.89			
St. Dev.	1.21	0.90			
Min	34.81	0.01			
Max	42.43	4.37			
Summary Count	192	192			
Total Count	192	192			

LLCR Delta Count by Category						
Stable Minor Acceptable Marginal Unstable Open						Open
mOhms <=5 >5 & <=10 >10 & <=15 >15 & <=50 >50 & <=1000						>1000
Acid Vapor	192	0	0	0	0	0

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A		
Part description: SFSD/TFM			

LLCR Shock & Vibration Group (SFSD-25-28-G-12.00-S/TFM-125-02-L-D-A)

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Measurement Summaries by Pin Type			ре
Date	7/14/2015	8/25/2015		
Room Temp (Deg C)	22	22		
Rel Humidity (%)	40	47		
Technician	Troy Cook	Aaron McKim		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Shock-Vib		
	Pin Type 1: Signal			
Average	67.77	0.84		
St. Dev.	1.11	0.68		
Min	65.79	0.01		
Max	70.14	2.61		
Summary Count	192	192		
Total Count	192	192		

LLCR Delta Count by Category						
	Stable Minor Acceptable Marginal Unstable C		Open			
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Shock-Vib	192	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary		
Contacts tested	60	
Test Condition	C, 100g's, 6ms, Half-Sine	
Shock Events	0	
Test Condition	V-B, 7.56 rms g	
Vibration Events	0	
Total Events	0	

Tracking Code: 477944_Report_Rev_2	Part #: SFSD-25-28-G-06.00-S/TFM-125-02-L-D-A	
Part description: SESD/TEM		

Cable Pull

0 ° Pull force

	Force
	(lbs)
Minimum	2.61
Maximum	3.46
Average	2.98

90 ° Pull force

	Force (lbs)
Minimum	17.86
Maximum	21.41
Average	20.09

Tracking Code: 477944 Report Rev 2

Part description: SFSD/TFM

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01

Description: Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 4/24/2015, Next Cal: 4/23/2016

Equipment #: HZ-OV-01 Description: Oven Manufacturer: Huida Model: CS101-1E Serial #: CS101-1E-B

Accuracy: Last Cal: 12/11/2014, Next Cal: 12/10/2015

Equipment #: HZ-THC-01 **Description:** Humidity transmitter **Manufacturer:** Thermtron

Model: SM-8-8200 Serial #: 38846

Accuracy: Last Cal: 2/26/2015, Next Cal: 2/25/2016

Equipment #: HZ-HPM-01 Description: NA9636H Manufacturer: Ainuo

Model: 6031A **Serial #:** 089601091

Accuracy: Last Cal: 3/5/2015, Next Cal: 3/4/2016

Equipment #: HZ-MO-05

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 3706 **Serial #:** 1285188

Accuracy: Last Cal: 11/13/2014, Next Cal: 11/12/2015

Equipment #: HZ-TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnatti Sub Zero

Model: VTS-3-6-6-SC/AC Serial #: 10-VT14994 Accuracy: See Manual

... Last Cal: 06/26/2014, Next Cal: 06/25/2015

Equipment #: HZ-MO-01

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700 Serial #: 1199807 Accuracy: See Manual

... Last Cal: 07/01/2015, Next Cal: 06/30/2016

Tracking Code: 477944 Report Rev 2

Part description: SFSD/TFM

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: HZ-PS-01

Description: 120 Amp Power Supply

Manufacturer: Agilent Model: 6031A PS Serial #: MY41000982 Accuracy: See Manual

... Last Cal: 07/01/2015, Next Cal: 06/30/2016

Equipment #: MO-11

Description: Switch/Multimeter **Manufacturer:** Keithley

Model: 3706

Serial #: 120169
Accuracy: See Manual

... Last Cal: 08/21/2014, Next Cal: 08/21/2015

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics **Model:** LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 04/22/2015, Next Cal: 04/22/2016

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03 Serial #: 115819 Accuracy: See Manual

... Last Cal: 07/18/2014, Next Cal: 07/18/2015

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD Serial #: 1100604 Accuracy: See Manual

... Last Cal: 10/31/2014, Next Cal: 10/31/2015

Equipment #: HPT-01

Description: Hipot Safety Tester

Manufacturer: Vitrek

Model: V73 Serial #: 019808

Accuracy:

... Last Cal: 05/15/2015, Next Cal: 05/15/2016